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Rising Demand for High-capacity Memory in AI Era

• Fueled by data-centric and AI/ML applications 

• Memory disaggregation emerges as a key trend

• Realize scalable memory capacity by pooling distributed memory resources

• Interconnect technologies are attracting significant attention 
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CXL-Flash 

• Compute Express Link (CXL)

• Driven by Intel (2019) 

• Cache-coherent interconnect technology

• Enables multi hosts and devices to share 

a common memory space 

• CXL-enabled flash memory 

• Provide high capacity 

• Hide long latency with intelligent prefetching 

and data placement 

• E. g. Samsung CMM-H
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• CXL-Flash

• CXL Type 3 Device

• CXL.io / CXL.mem

• Accessed in cache-line units (i.e., 64B) by host processor

CXL-Flash
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Challenges of CXL-Flash as Memory Module
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Challenges of CXL-Flash as Memory Module
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• TRIM command

• Handle mismatch between file data and actual data on SSD

• Share validity information of data with the underlying device

TRIM for Conventional SSD
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• Invalid data will get accumulated within CXL-Flash

• TRIM enables the kernel to inform the underlying device of data validity

• No copying of freed data during GC

TRIM is Necessary for CXL-Flash too!
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Designing TRIM for CXL-Flash

• TRIM triggered by buddy system upon reclamation 

• Privileged operation

• Asynchronously via CXL.io protocol 

13

C
X

L
-
fl

a
s

h

CPU

Root Complex

TRIM via CXL.io

Host

Memory

…
Page 0

Page 1

Page 2

Page 3

mapping table

200    1

100    1

81      1

762    1

TRIM (lpn,length)

900    0

30      1

999    1

605    1

app A app B app C
user

free()

(Buddy system)
kernel

device
CXL-flash

malloc()

V V V F V F

V V IV F V F

freed!

Invalidate!

Notify

via CXL.io

Valid bit



Difficulties in Assessing TRIM Impact

• Simulation/emulation are not suitable for CXL-Flash

• Hard to capture traces during meaningful time window

• Excessive memory access

• # of Memory access ⋙ # of Storage access

• Emulators suffer from limited functionality or slow execution

• OpenCIS, Flight Simulator, CXLMemSim

• NUMA emulation

• Hard to conduct measurement study

• CXL-compliant devices have limited availability

• Profiling TRIM-related operations is challenging
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Analytic Model for CXL-flash

• Previous work: Analytic Modeling of SSD Write Performance (SYSTOR’ 12)

• Modeling write amplification based on overprovisioning ratio with LRU cleaning policy

• No considerations on TRIM command 

• 𝐴 = 𝑊𝑟𝑖𝑡𝑒 𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟, 𝛼 =
# 𝑜𝑓 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑏𝑙𝑜𝑐𝑘

# 𝑜𝑓 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑏𝑙𝑜𝑐𝑘
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Our Analytic Model for CXL-flash

• Extend analytical model to support TRIM 

• New terminology 𝐷𝑟 : ratio of Trim traffic to write traffic

• Write amplification(A) prediction using # of valid pages in block
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Validation of Analytical Model
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Estimation of TRIM’s Effects in Real World

• Data centers running numerous VMs the need for CXL-Flash stands out most.

• Microsoft Azure VM Traces 5000 VMs sampled

• Each VM’s Lifetime, Memory (GB)

• YCSB (A-F) / DLRM (Train/Infer)

• TRIM is issued upon VM termination
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Estimation of TRIM’s Effects in Real World (cont’)

• Our model:   𝑨 =
𝜶

𝜶+
𝑾(−𝜶 𝟏+𝑫𝒓 𝒆−𝜶 𝟏+𝑫𝒓 )

𝟏+𝑫𝒓

• Defined as  𝐷𝑟 =
𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑 𝑠𝑖𝑧𝑒

𝑙𝑜𝑎𝑑 𝑝ℎ𝑎𝑠𝑒 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 + 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑝ℎ𝑎𝑠𝑒 𝑡𝑟𝑎𝑓𝑓𝑖𝑐

• d𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑 𝑠𝑖𝑧𝑒 assumed to be equal to 𝑙𝑜𝑎𝑑 𝑝ℎ𝑎𝑠𝑒 𝑡𝑟𝑎𝑓𝑓𝑖𝑐

• VM’s Memory(GB)

• Profiling LLC_misses.mem_write with linux perf tool

• No data of each VM’s memory write traffic

• Random mapping write traffic to VMs

• YCSB + DLRM mixed at different ratio 6:4 / 3:7
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Estimation of TRIM’s Effects in Real World (cont’)

• TRIM effect on CXL-Flash running VMs over time

• NT(No Trim): reaching a state fully occupied by fake valid data

• T(Trim): reduction in WAF
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Estimation of TRIM’s Effects in Real World (cont’)

• Memory Utilization : TRIM (T) vs. No TRIM (NT)

• Size of CXL-Flash (the max-memory simultaneously used): 22.75 GB

• Spare factor of CXL-Flash is set to 0.1

• CXL-Flash perceives available spaces are fully utilized beyond a certain point
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Estimation of TRIM’s Effects in Real World (cont’)

• Average WAF in CXL-Flash running VMs

• WAF reduced by 11.56% on average, reaching a maximum of 19.69%
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Discussion

• Proper coordination is needed to prevent data loss

• Kernel must defer reallocating the TRIM-pending area until ACK is received

• Device must notify the kernel upon TRIM completion
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Discussion 

• Proper coordination is needed to prevent data loss

• Kernel must defer reallocating the TRIM-pending area until ACK is received

• Device must notify the kernel upon TRIM completion
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Conclusion

• Summary

• TRIM via CXL.io to invalidate fake valid data in CXL-Flash

• Near-exact extended analytical model for TRIM effect evaluation

• Demonstration of the necessity of TRIM on real-world scenarios using our model 

• TRIM-like mechanism is necessary for CXL-Flash!

• Synchronization issues should be considered

• Future work

• Identification of optimal host-side TRIM initiator and analysis of TRIM overhead

• Analysis of long-term impact of TRIM on memory performance and endurance in CXL-Flash

• Estimation of TRIM effectiveness via Workload- and GC policy-aware analytical model in real-world 

scenario
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Back-ups

• Design for TRIM in user-level: system call for user apps invoking TRIM

• Memory allocator (e.g. Jemalloc, TCMalloc, Mimalloc)

• JVM
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Back-ups:  Extended Analytic Model

• Extend analytical model to support TRIM 

• 𝐷𝑟 : ratio of discard (trimmed) traffic to write traffic
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Back-ups:  Extended Analytic Model
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Back-ups:  Extended Analytic Model
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Back-ups:  Extended Analytic Model
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Back-ups:  Extended Analytic Model
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Back-ups:  Extended Analytic Model
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Back-ups:  Extended Analytic Model
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