
Revisiting Trim for CXL Memory

Hayan Lee1, Jungwoo Kim2, Wookyung Lee1, Juhyung Park2, Sanghyuk Jung3,

Jinki Han3, Bryan S. Kim4, Sungjin Lee5, Eunji Lee1

1Soongsil University, 2DGIST, 3 Eeum, 4Syracuse University, 5POSTECH

Contents

• Background

• Motivation

• Trim for CXL-flash

• Design

• Analytical Model

• Evaluation for real-world workloads

• Methodology

• Result

• Conclusion

• Future work

2

Rising Demand for High-capacity Memory in AI Era

• Fueled by data-centric and AI/ML applications

• Memory disaggregation emerges as a key trend

• Realize scalable memory capacity by pooling distributed memory resources

• Interconnect technologies are attracting significant attention

3

CXL-Flash

• Compute Express Link (CXL)

• Driven by Intel (2019)

• Cache-coherent interconnect technology

• Enables multi hosts and devices to share

a common memory space

• CXL-enabled flash memory

• Provide high capacity

• Hide long latency with intelligent prefetching

and data placement

• E. g. Samsung CMM-H

4

https://computeexpresslink.org/blog/explaining-cxl-memory-pooling-and-sharing-1049/

CXL Consortium

• CXL-Flash

• CXL Type 3 Device

• CXL.io / CXL.mem

• Accessed in cache-line units (i.e., 64B) by host processor

CXL-Flash

5

Type 3 Device

CXL-flash

CXL.io / CXL.mem

Main

Memory

Host

Processor

Mem

Mem Mem

Challenges of CXL-Flash as Memory Module

6

When DRAM used

V V V F V F

Buddy system

app A app B app C
user

kernel

device

app A app B app C
user

DRAM

free()

Buddy system

kernel

device
CXL-flash

malloc()

V V F F V F

V V V F V F

V V V F V F

freed!

Free page

free()malloc()

Zero cost for retaining invalid data

Challenges of CXL-Flash as Memory Module

7

When DRAM used When CXL-Flash used

Zero cost for retaining invalid data

V V V F V F

Buddy system

app A app B app C
user

kernel

device

app A app B app C
user

DRAM

Buddy system

kernel

device
CXL-flash

V V F F V F

V V V F V F

V V V F V F

freed!

Free page

free()malloc() free()malloc()

Challenges of CXL-Flash as Memory Module

8

When DRAM used When CXL-Flash used

Zero cost for retaining invalid data

V V V F V F

Buddy system

app A app B app C
user

kernel

device

app A app B app C
user

DRAM

Buddy system

kernel

device
CXL-flash

V V F F V F

V V V F V F

V V V F V F

freed! freed!

Free page Still valid!

free()malloc()free()malloc()

Challenges of CXL-Flash as Memory Module

9

When DRAM used When CXL-Flash used

V V V F V F

Buddy system

app A app B app C
user

kernel

device

app A app B app C
user

DRAM

Buddy system

kernel

device
CXL-flash

V V F F V F

V V V F V F

V V V F V F

freed! freed!

Free page Still valid!

Validity

mismatch

Zero cost for retaining invalid data

free()malloc()free()malloc()

Challenges of CXL-Flash as Memory Module

10

When DRAM used When CXL-Flash used

V V V F V F

Buddy system

app A app B app C

Need additional cost for invalid data!

• Write amplification problem

• Fatal to lifetime-limited flash

user

kernel

device

app A app B app C
user

DRAM

Buddy system

kernel

device
CXL-flash

Will be copied during GC !

V V F F V F

V V V F V F

V V V F V F

freed! freed!

Free page Still valid!

Validity

mismatch

free()malloc()free()malloc()

Zero cost for retaining invalid data

• TRIM command

• Handle mismatch between file data and actual data on SSD

• Share validity information of data with the underlying device

TRIM for Conventional SSD

11

file A file B

file C file D

free space

OS

logical view

SSD

logical view

SSD

physical view

overprovisioning

A1 A2 B1 B2

C1 C2 D1 D2

A1 A2 B1 B2

C1 C2 D1 D2

file A file B

file D

A1 A2 B1 B2

C1 C2 D1 D2

A1 A2 B1 B2

C1 C2 D1 D2

file A file B

file D

A1 A2 B1 B2

D1 D2

A1 A2 B1 B2

D1 D2

rm “file C”

still valid

TRIM

file C

GC GC

file C

rm “fileC”

invalidated

• Invalid data will get accumulated within CXL-Flash

• TRIM enables the kernel to inform the underlying device of data validity

• No copying of freed data during GC

TRIM is Necessary for CXL-Flash too!

12

free space

OS

logical view

CXL-Flash

overprovisioning

A1 A2

malloc(B)

data B

B1 B2 B3

free(B)malloc(C) free(C)

data C

C2 C3 C4

C1

D1 D2

malloc(D) free(D)

data D

F1 F2 F3

E1 In the end ..

G1 H1 H2 Will be fully utilized

data A How do we free this?

Designing TRIM for CXL-Flash

• TRIM triggered by buddy system upon reclamation

• Privileged operation

• Asynchronously via CXL.io protocol

13

C
X

L
-
fl

a
s

h

CPU

Root Complex

TRIM via CXL.io

Host

Memory

…
Page 0

Page 1

Page 2

Page 3

mapping table

200 1

100 1

81 1

762 1

TRIM (lpn,length)

900 0

30 1

999 1

605 1

app A app B app C
user

free()

(Buddy system)
kernel

device
CXL-flash

malloc()

V V V F V F

V V IV F V F

freed!

Invalidate!

Notify

via CXL.io

Valid bit

Difficulties in Assessing TRIM Impact

• Simulation/emulation are not suitable for CXL-Flash

• Hard to capture traces during meaningful time window

• Excessive memory access

• # of Memory access ⋙ # of Storage access

• Emulators suffer from limited functionality or slow execution

• OpenCIS, Flight Simulator, CXLMemSim

• NUMA emulation

• Hard to conduct measurement study

• CXL-compliant devices have limited availability

• Profiling TRIM-related operations is challenging

14

CMM-H

Analytic Model for CXL-flash

• Previous work: Analytic Modeling of SSD Write Performance (SYSTOR’ 12)

• Modeling write amplification based on overprovisioning ratio with LRU cleaning policy

• No considerations on TRIM command

• 𝐴 = 𝑊𝑟𝑖𝑡𝑒 𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟, 𝛼 =
𝑜𝑓 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑏𝑙𝑜𝑐𝑘

𝑜𝑓 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑏𝑙𝑜𝑐𝑘

15

…

rate A

In Out

Queue

Original model:

𝑨(𝑊𝐴𝐹) =
𝜶

𝜶 + 𝑾(−𝜶𝒆−𝜶)

(overprovisiong ratio α)

validwrite valid

Eviction

position

Analytic Model for CXL-flash

• Previous work: Analytic Modeling of SSD Write Performance (SYSTOR’ 12)

• Modeling write amplification based on overprovisioning ratio with LRU cleaning policy

• No considerations on TRIM command

• 𝐴 = 𝑊𝑟𝑖𝑡𝑒 𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟, 𝛼 =
𝑜𝑓 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑏𝑙𝑜𝑐𝑘

𝑜𝑓 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑏𝑙𝑜𝑐𝑘

16

…

rate A

In Out

Queue

2 valid pages

will be copied

Original model:

𝑨(𝑊𝐴𝐹) =
𝜶

𝜶 + 𝑾(−𝜶𝒆−𝜶)

(overprovisiong ratio α)

valid

write

valid

Eviction

position

Our Analytic Model for CXL-flash

• Extend analytical model to support TRIM

• New terminology 𝐷𝑟 : ratio of Trim traffic to write traffic

• Write amplification(A) prediction using # of valid pages in block

17

…

rate A

In Out

Queue

write

TRIM

Our model:

𝑨(𝑊𝐴𝐹) =
𝜶

𝜶 +
𝑾(−𝜶 𝟏 + 𝑫𝒓 𝒆−𝜶 𝟏+𝑫𝒓)

𝟏 + 𝑫𝒓

(overprovisiong ratio α)
Eviction

position

Our Analytic Model for CXL-flash

• Extend analytical model to support TRIM

• New terminology 𝐷𝑟 : ratio of Trim traffic to write traffic

• Write amplification(A) prediction using # of valid pages in block

18

…

rate A

In Out

Queue

write

No page

to be copied!TRIM

Higher chance that pages in block get invalidated

than the original model

Our model:

𝑨(𝑊𝐴𝐹) =
𝜶

𝜶 +
𝑾(−𝜶 𝟏 + 𝑫𝒓 𝒆−𝜶 𝟏+𝑫𝒓)

𝟏 + 𝑫𝒓

(overprovisiong ratio α)
Eviction

position

Validation of Analytical Model

19

• Comparison between modeled(M) and simulated(S) WAF

• Methodology

• Implement TRIM command in FTLSim (SYSTOR’ 12)

• 106 logical blocks, 128 pages per block

• Synthetic workloads

• ⑴Write entire logical space for warm-up

• ⑵ Uniformly distributed writes (1/3 of total capacity)

+ TRIM issued every 10 writes (𝐷𝑟)

0.53x

0.39x

1x

0.32x

0.65x

0.51x

0.44x

1x

1x

0.72x

0.6x

0.54x

1x

0.61x

1x

0.7x

Validation of Analytical Model

20

0.53x

0.39x

1x

0.32x

0.65x

0.51x

0.44x

1x

1x

0.72x

0.6x

0.54x

1x

0.61x

1x

0.7x

M

M

M

M

• Comparison between modeled(M) and simulated(S) WAF

• Methodology

• Implement TRIM command in FTLSim (SYSTOR’ 12)

• 106 logical blocks, 128 pages per block

• Synthetic workloads

• ⑴Write entire logical space for warm-up

• ⑵ Uniformly distributed writes (1/3 of total capacity)

+ TRIM issued every 10 writes (𝐷𝑟)

M

M

M

M

Validation of Analytical Model

21

0.53x

0.39x

1x

0.32x

0.65x

0.51x

0.44x

1x

1x

0.72x

0.6x

0.54x

1x

0.61x

1x

0.7x

S

S

S

S

• Comparison between modeled(M) and simulated(S) WAF

• Methodology

• Implement TRIM command in FTLSim (SYSTOR’ 12)

• 106 logical blocks, 128 pages per block

• Synthetic workloads

• ⑴Write entire logical space for warm-up

• ⑵ Uniformly distributed writes (1/3 of total capacity)

+ TRIM issued every 10 writes (𝐷𝑟)

M

M

M

M

Validation of Analytical Model

• Comparison between modeled(M) and simulated(S) WAF

• Methodology

• Implement TRIM command in FTLSim (SYSTOR’ 12)

• 106 logical blocks, 128 pages per block

• Synthetic workloads

• ⑴Write entire logical space for warm-up

• ⑵ Uniformly distributed writes (1/3 of total capacity)

+ TRIM issued every 10 writes (𝐷𝑟)

22

0.53x

0.39x

1x

0.32x

0.65x

0.51x

0.44x

1x

1x

0.72x

0.6x

0.54x

1x

0.61x

1x

0.7x

S

S

S

S

Closely aligned!

Estimation of TRIM’s Effects in Real World

• Data centers running numerous VMs the need for CXL-Flash stands out most.

• Microsoft Azure VM Traces 5000 VMs sampled

• Each VM’s Lifetime, Memory (GB)

• YCSB (A-F) / DLRM (Train/Infer)

• TRIM is issued upon VM termination

23

CXL-Flash

Host OS (buddy system)

・・・

VM2 VM4999 VM5000VM1

10GB 5GB 15GB 2GB

TRIM TRIMTRIM

Terminated Terminated Terminated

Estimation of TRIM’s Effects in Real World (cont’)

• Our model: 𝑨 =
𝜶

𝜶+
𝑾(−𝜶 𝟏+𝑫𝒓 𝒆−𝜶 𝟏+𝑫𝒓)

𝟏+𝑫𝒓

• Defined as 𝐷𝑟 =
𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑 𝑠𝑖𝑧𝑒

𝑙𝑜𝑎𝑑 𝑝ℎ𝑎𝑠𝑒 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 + 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑝ℎ𝑎𝑠𝑒 𝑡𝑟𝑎𝑓𝑓𝑖𝑐

• d𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑 𝑠𝑖𝑧𝑒 assumed to be equal to 𝑙𝑜𝑎𝑑 𝑝ℎ𝑎𝑠𝑒 𝑡𝑟𝑎𝑓𝑓𝑖𝑐

• VM’s Memory(GB)

• Profiling LLC_misses.mem_write with linux perf tool

• No data of each VM’s memory write traffic

• Random mapping write traffic to VMs

• YCSB + DLRM mixed at different ratio 6:4 / 3:7

24

Time (s)

15 GB allocated to VM
VMs

DLRM-Train

CXL-Flash

Host OS (buddy system)

load-phase

(initialize for 15GB)

15GB

runtime-phase

discard

15GB

VM1

Memory access traffic (MB/s)

𝐷𝑟 =
15

15 + 0.5 ∗ 500
= 0.05

500s
↑

Estimation of TRIM’s Effects in Real World (cont’)

• TRIM effect on CXL-Flash running VMs over time

• NT(No Trim): reaching a state fully occupied by fake valid data

• T(Trim): reduction in WAF

25

benefit area

Time (s)

10 GB

15 GB

2 GB

7 GB

VMs

VM1

VM2

VM5000

• • •
VM4999

YCSB-A

DLRM-Train

YCSB-F

DLRM-Infer

TRIM!

TRIM!

TRIM!

TRIM!

Estimation of TRIM’s Effects in Real World (cont’)

• Memory Utilization : TRIM (T) vs. No TRIM (NT)

• Size of CXL-Flash (the max-memory simultaneously used): 22.75 GB

• Spare factor of CXL-Flash is set to 0.1

• CXL-Flash perceives available spaces are fully utilized beyond a certain point

26

No Trim

Trim

Memory Utilization over time

Estimation of TRIM’s Effects in Real World (cont’)

• Average WAF in CXL-Flash running VMs

• WAF reduced by 11.56% on average, reaching a maximum of 19.69%

27

Discussion

• Proper coordination is needed to prevent data loss

• Kernel must defer reallocating the TRIM-pending area until ACK is received

• Device must notify the kernel upon TRIM completion

28

trim(4)

User Kernel CXL-Flash

free(4)

alloc()

alloc(4)

write
(4, “Tom”)

“Amy”: Valid

“Tom”: Valid

“Amy”: Invalid

lpn 4

In-order execution

CXL.io

CXL.mem

Where’s my Tom?

trim(4)

User Kernel CXL-Flash

free(4)

alloc()

alloc(4)

write
(4, “Tom”)

Out-of-order execution

“Tom”: Valid

lpn 4

CXL.io

CXL.mem

“Amy”: Valid

Newly written data “Tom”: Invalid

Discussion

• Proper coordination is needed to prevent data loss

• Kernel must defer reallocating the TRIM-pending area until ACK is received

• Device must notify the kernel upon TRIM completion

29

trim(4)

Kernel CXL-Flash

free(4)

alloc()

Coordinated out-of-order execution

“Amy”, Valid

“Tom”, Valid

“Amy”, Invalid

lpn 4

CXL.io

★ack(4)

alloc(4)

write
(4, “Tom”) CXL.mem

My Tom is alive!

User

Conclusion

• Summary

• TRIM via CXL.io to invalidate fake valid data in CXL-Flash

• Near-exact extended analytical model for TRIM effect evaluation

• Demonstration of the necessity of TRIM on real-world scenarios using our model

• TRIM-like mechanism is necessary for CXL-Flash!

• Synchronization issues should be considered

• Future work

• Identification of optimal host-side TRIM initiator and analysis of TRIM overhead

• Analysis of long-term impact of TRIM on memory performance and endurance in CXL-Flash

• Estimation of TRIM effectiveness via Workload- and GC policy-aware analytical model in real-world

scenario

30

31

Hayan Lee (hayany19@gmail.com)

Our paper!

mailto:hayany19@gmail.com

Back-ups

• Design for TRIM in user-level: system call for user apps invoking TRIM

• Memory allocator (e.g. Jemalloc, TCMalloc, Mimalloc)

• JVM

32

Back-ups: Extended Analytic Model

• Extend analytical model to support TRIM

• 𝐷𝑟 : ratio of discard (trimmed) traffic to write traffic

33

…

Total T blocks

𝑈 = 𝑇(1 − 𝑆𝑓) valid, 𝑆𝑓 ∙ 𝑇 stale

Ext. write

valid pages copied to write frontier blk

rate A

Int. write

A

selected for

cleaning
valid

page

LRW block

TRIM

1

stale

by Ext.write

𝐷𝑟

𝑁𝑝 = 1

𝐴 =
𝐼𝑛𝑡. 𝑤𝑟𝑖𝑡𝑒

𝐸𝑥𝑡. 𝑤𝑟𝑖𝑡𝑒
stale

by TRIM

Back-ups: Extended Analytic Model

34

…

Total T blocks

𝑈 = 𝑇(1 − 𝑆𝑓) valid, 𝑆𝑓 ∙ 𝑇 stale

rate A

Int. write

A

valid

page

End of queue

𝑺 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 = 𝟏 − (
𝟏

𝑼𝑵𝒑
+

𝑫𝒓

𝑼𝑵𝒑
)

𝑻𝑵𝒑

𝑨
at end of queue

stale

𝑁𝑝 = 1

𝐴 =
𝐼𝑛𝑡. 𝑤𝑟𝑖𝑡𝑒

𝐸𝑥𝑡. 𝑤𝑟𝑖𝑡𝑒

Back-ups: Extended Analytic Model

35

…

Total T blocks

𝑈 = 𝑇(1 − 𝑆𝑓) valid, 𝑆𝑓 ∙ 𝑇 stale

Ext. write

rate A

Int. write

A

𝑁𝑝 = 1

𝐴 =
𝐼𝑛𝑡. 𝑤𝑟𝑖𝑡𝑒

𝐸𝑥𝑡. 𝑤𝑟𝑖𝑡𝑒
valid

page
1

End of queue

𝑺 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 = 𝟏 − (
𝟏

𝑼𝑵𝒑
+

𝑫𝒓

𝑼𝑵𝒑
)

𝑻𝑵𝒑

𝑨
at end of queue

stale

Back-ups: Extended Analytic Model

36

…

Total T blocks

𝑈 = 𝑇(1 − 𝑆𝑓) valid, 𝑆𝑓 ∙ 𝑇 stale

Ext. write

rate A

Int. write

A

valid

page
1

End of queue

𝑺 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 = 𝟏 − (
𝟏

𝑼𝑵𝒑
+

𝑫𝒓

𝑼𝑵𝒑
)

𝑻𝑵𝒑

𝑨
at end of queue

𝟏

𝑼𝑵𝒑

stale

𝑁𝑝 = 1

𝐴 =
𝐼𝑛𝑡. 𝑤𝑟𝑖𝑡𝑒

𝐸𝑥𝑡. 𝑤𝑟𝑖𝑡𝑒

Back-ups: Extended Analytic Model

37

…

Total T blocks

𝑈 = 𝑇(1 − 𝑆𝑓) valid, 𝑆𝑓 ∙ 𝑇 stale

Ext. write

rate A

Int. write

A

valid

page
1

End of queue

𝑺 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 = 𝟏 − (
𝟏

𝑼𝑵𝒑
+

𝑫𝒓

𝑼𝑵𝒑
)

𝑻𝑵𝒑

𝑨
at end of queue

stale

𝑁𝑝 = 1

𝐴 =
𝐼𝑛𝑡. 𝑤𝑟𝑖𝑡𝑒

𝐸𝑥𝑡. 𝑤𝑟𝑖𝑡𝑒

Back-ups: Extended Analytic Model

38

…

Total T blocks

𝑈 = 𝑇(1 − 𝑆𝑓) valid, 𝑆𝑓 ∙ 𝑇 stale

Ext. write

rate A

Int. write

A

valid

page
1

End of queue

𝑺 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 = 𝟏 − (
𝟏

𝑼𝑵𝒑
+

𝑫𝒓

𝑼𝑵𝒑
)

𝑻𝑵𝒑

𝑨
at end of queue

TRIM

stale

𝐷𝑟

𝑁𝑝 = 1

𝐴 =
𝐼𝑛𝑡. 𝑤𝑟𝑖𝑡𝑒

𝐸𝑥𝑡. 𝑤𝑟𝑖𝑡𝑒

Back-ups: Extended Analytic Model

39

…

Total T blocks

𝑈 = 𝑇(1 − 𝑆𝑓) valid, 𝑆𝑓 ∙ 𝑇 stale

Ext. write

rate A

Int. write

A

valid

page
1

End of queue

𝑺 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 = 𝟏 − (
𝟏

𝑼𝑵𝒑
+

𝑫𝒓

𝑼𝑵𝒑
)

𝑻𝑵𝒑

𝑨
at end of queue

TRIM

𝐷𝑟 ∙
𝟏

𝑼𝑵𝒑

stale

𝐷𝑟

𝑁𝑝 = 1

𝐴 =
𝐼𝑛𝑡. 𝑤𝑟𝑖𝑡𝑒

𝐸𝑥𝑡. 𝑤𝑟𝑖𝑡𝑒

Back-ups: Extended Analytic Model

40

…

Total T blocks

𝑈 = 𝑇(1 − 𝑆𝑓) valid, 𝑆𝑓 ∙ 𝑇 stale

Ext. write

rate A

Int. write

A

valid

page
1

End of queue

𝑺 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 = 𝟏 − (
𝟏

𝑼𝑵𝒑
+

𝑫𝒓

𝑼𝑵𝒑
)

𝑻𝑵𝒑

𝑨
at end of queue

stale

possibility of a page remaining valid

𝐷𝑟
TRIM

𝑁𝑝 = 1

𝐴 =
𝐼𝑛𝑡. 𝑤𝑟𝑖𝑡𝑒

𝐸𝑥𝑡. 𝑤𝑟𝑖𝑡𝑒

Back-ups: Extended Analytic Model

41

…

Total T blocks

𝑈 = 𝑇(1 − 𝑆𝑓) valid, 𝑆𝑓 ∙ 𝑇 stale

Ext. write

rate A

Int. write

A

valid

page
1

End of queue

𝑺 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 = 𝟏 − (
𝟏

𝑼𝑵𝒑
+

𝑫𝒓

𝑼𝑵𝒑
)

𝑻𝑵𝒑

𝑨
at end of queue

stale

𝐷𝑟
TRIM

block Q

Q’s journey until reaching to EOQ

𝑁𝑝 = 1

𝐴 =
𝐼𝑛𝑡. 𝑤𝑟𝑖𝑡𝑒

𝐸𝑥𝑡. 𝑤𝑟𝑖𝑡𝑒

Back-ups: Extended Analytic Model

42

…

Total T blocks

𝑈 = 𝑇(1 − 𝑆𝑓) valid, 𝑆𝑓 ∙ 𝑇 stale

Ext. write

rate A

Int. write

A

valid

page
1

End of queue

𝑺 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 = 𝟏 − (
𝟏

𝑼𝑵𝒑
+

𝑫𝒓

𝑼𝑵𝒑
)

𝑻𝑵𝒑

𝑨
at end of queue

stale

𝐷𝑟
TRIM

block Q

Q’s journey until reaching to EOQ

of expected writes during Q’s journey

𝑁𝑝 = 1

𝐴 =
𝐼𝑛𝑡. 𝑤𝑟𝑖𝑡𝑒

𝐸𝑥𝑡. 𝑤𝑟𝑖𝑡𝑒

Back-ups: Extended Analytic Model

43

…

Total T blocks

𝑈 = 𝑇(1 − 𝑆𝑓) valid, 𝑆𝑓 ∙ 𝑇 stale

Ext. write

rate A

Int. write

A

valid

page
1

𝑺 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 = 𝟏 − (
𝟏

𝑼𝑵𝒑
+

𝑫𝒓

𝑼𝑵𝒑
)

𝑻𝑵𝒑

𝑨
at end of queue

𝑨 𝑊𝑟𝑖𝑡𝑒 𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝟏

𝟏−𝑺

stale

𝐷𝑟
TRIM

LRW block

selected for

cleaning

valid page copied to write frontier blk

𝑁𝑝 = 1

𝐴 =
𝐼𝑛𝑡. 𝑤𝑟𝑖𝑡𝑒

𝐸𝑥𝑡. 𝑤𝑟𝑖𝑡𝑒

	Slide 1: Revisiting Trim for CXL Memory
	Slide 2: Contents
	Slide 3: Rising Demand for High-capacity Memory in AI Era
	Slide 4: CXL-Flash
	Slide 5: CXL-Flash
	Slide 6: Challenges of CXL-Flash as Memory Module
	Slide 7: Challenges of CXL-Flash as Memory Module
	Slide 8: Challenges of CXL-Flash as Memory Module
	Slide 9: Challenges of CXL-Flash as Memory Module
	Slide 10: Challenges of CXL-Flash as Memory Module
	Slide 11: TRIM for Conventional SSD
	Slide 12: TRIM is Necessary for CXL-Flash too!
	Slide 13: Designing TRIM for CXL-Flash
	Slide 14: Difficulties in Assessing TRIM Impact
	Slide 15: Analytic Model for CXL-flash
	Slide 16: Analytic Model for CXL-flash
	Slide 17: Our Analytic Model for CXL-flash
	Slide 18: Our Analytic Model for CXL-flash
	Slide 19: Validation of Analytical Model
	Slide 20: Validation of Analytical Model
	Slide 21: Validation of Analytical Model
	Slide 22: Validation of Analytical Model
	Slide 23: Estimation of TRIM’s Effects in Real World
	Slide 24: Estimation of TRIM’s Effects in Real World (cont’)
	Slide 25: Estimation of TRIM’s Effects in Real World (cont’)
	Slide 26: Estimation of TRIM’s Effects in Real World (cont’)
	Slide 27: Estimation of TRIM’s Effects in Real World (cont’)
	Slide 28: Discussion
	Slide 29: Discussion
	Slide 30: Conclusion
	Slide 31
	Slide 32: Back-ups
	Slide 33: Back-ups: Extended Analytic Model
	Slide 34: Back-ups: Extended Analytic Model
	Slide 35: Back-ups: Extended Analytic Model
	Slide 36: Back-ups: Extended Analytic Model
	Slide 37: Back-ups: Extended Analytic Model
	Slide 38: Back-ups: Extended Analytic Model
	Slide 39: Back-ups: Extended Analytic Model
	Slide 40: Back-ups: Extended Analytic Model
	Slide 41: Back-ups: Extended Analytic Model
	Slide 42: Back-ups: Extended Analytic Model
	Slide 43: Back-ups: Extended Analytic Model

